

Slide 2



# Part I, Clean Fossil Fuels Inventory Inventory is structured by three energy systems: Power & Heat demand New Gas demand Transport fuel demand Conclusions of the inventory: Enough usable CO<sub>2</sub> available Enough CO<sub>2</sub> reduction options available Enough storage capacity available

Slide 4





Slide 6



## I.4 Technical challenges

- <u>Preconditions</u> for the introduction of CFF state of the art technologies are:
  - Cost reduction, 50 %
  - Reduction energy consumption, 50%
- Development of new technologies:
  - New concepts (ZEPP, etc.)
  - Break-through techn. (membranes, etc.)
- <u>International cooperation</u> is a necessity for the Netherlands

#### Slide 8

# Part II, The CRUST-project

- *Market* inventory (2001)
- Legal inventory (2001)
- *Monitoring* and *safety* study (2002)
- Two feasibility studies (2002)
- *Social* aspects inventory (2001-2002)
- *Tendering* for demonstration (2003)

Brochures of the above available: (i) give business card (ii) http://www.crust.nl or (iii) p.stollwerk@novem.nl

Novem May 6, 2003 4

## II.1a Feasibility Studies NAM

## Characteristics:

- Injection in abandoned <u>onshore</u> gas field, capacity more than 3 Mt
- Project outline 0.5Mton CO<sub>2</sub> p.a.
- Dry CO<sub>2</sub> stream, Shell Pernis 99vol%
- Existing pipeline 30-40 bar, 16 km
  - Compression in Pernis and De Lier
- Reuse:
  - Greenhouses for reuse available
  - EGR no option, hopefully in the future

Slide 10

## II.1b Feasibility Studies NAM

### Identified issues:

- Risks w.r.t. transportation of CO<sub>2</sub>
- Risks w.r.t. subsurface storage:
  - diffusion in wells 20cm/100 years
  - reservoir structure, possible interference with an aquifer
- Public awareness is growing
- Long term liability is of concern
- License to operate is important
- Communication with stakeholders

Novem May 6, 2003 5

# II.1c Feasibility Studies NAM

## <u>Preconditions</u> for success:

- Concentrated CO<sub>2</sub> stream for free
- Pipelines available at low costs
- Injection location is available
- Revenues from greenhouses optional

Slide 12

# II.2a Feasibility study Gaz de France (GDF)

- Offshore re-injection of CO<sub>2</sub>
- Project outline:
  - 1st phase: 0,02Mton p.a.
  - $-2^{nd}$  phase: 0,5 Mton p.a.
- Making use of available facilities:
  - Platform, scrubbing equipment, wells
  - Natural gas with 13% CO<sub>2</sub>
- Not available: compression unit



Slide 14



Novem May 6, 2003 7

# II.4a Monitoring & Safety

- Monitoring aspects:
  - Surface:
    - State of the art technology
    - Pressure control system important
    - Timeframe: 25-50 years after abandonment
  - Subsurface:
    - Monitoring techniques depend on design of facility
    - Time lapse seismic in combination with wells observation
    - Timeframe: 75-125 years after abandonment

Slide 16

# II.4b Monitoring & Safety

- Safety regulations:
  - CO<sub>2</sub> is a non-hazardous substance
  - Hazards of Major Accidents Decree does not apply
  - CO<sub>2</sub> is no waste aboveground
  - CO<sub>2</sub> is seen as a waste underground
- Quantitative risk assessment (EIS)
- Adopt rules for UGS
- Deploy potential of seismic monitoring techniques

# II.5 Tendering the Demonstration

- European tender opened E/EP/RE/03010009
- Until 16 May 2003
- €3mln (10 % own financing)
- Onshore and/or offshore
- Start 2004, preliminary report within 2 or 3 years

#### Slide 18

# III. Summing-up

- Enough usable CO<sub>2</sub> available (NL)
- Enough storage capacity available (NL)
- Tender open, storage projects identified:
  - 0,5Mton p.a. onshore storage €45 per ton
  - 0,5Mton p.a. offshore storage €5-8 per ton
- Legal blank spots identified
- Create acceptance with communication
- Risks are low, no real safety concerns
- Development monitoring system